产品展示
液压支架管
产品型号: 液压支架管
产品描述:

       

液压支架管硬度:
考虑其他因素的情况下液压支架管硬度越高耐磨性也就好,铸铁的耐磨性好是因为灰铸铁内含有片状石墨的,我们知道石墨具有润滑性能.所以铸铁虽然硬度低但是耐磨性好就是因为石墨的减磨.还有就是表面的光洁度,表面光洁度越高,摩擦越小相对来说同种材料根据表面处理不同,硬度跟耐磨性是成正比的.
液压支架管硬度硬度越高,耐磨性越好,故常将硬度值作为衡量材料耐磨性的重要指标之一。
但是耐磨性最好的材料不一定硬度高.最常用的耐磨材料比如铸铁硬度就不高,发动机的凸轮轴就常用铸铁.更典型的还有滑动轴承里的耐磨层是巴氏合金硬度也不高.还有蜗杆蜗轮减速器里为了增强耐磨性,一般用硬度低青铜合金做蜗轮。耐磨,要求的是嵌入性和摩擦顺应性.就是材料磨过后能最快的形成两摩擦面的凹凸相配合的磨擦面.
如果单纯追求表面硬度.过硬的材料不容易磨合.反而会降低摩擦面的耐磨性.
根据磨损的机理:
如果是切入式磨损,则提高表面硬度可以较好的提高耐磨性;而如果是冲击性磨损,则提高的效果会差一些。
液压支架管硬度高的比低的耐磨性好
润滑好时候比差的时候好
表面比压小比大的耐磨好(含接触面积和压力)
表面粗糙度低的比高的好
内部结构是碳化物比其它晶体结构(马氏体,铁素体等)好
耐磨性是指抵抗摩擦作用的能力影响这种能力的因素不仅取决于钢的成分、组织和性能如硬度碳化物特性、数量、形状与分布还与使用条件和拉伸工艺密切相关如:线材表面粘有大量的灰层沙粒。
液压支架管硬度是衡量金属材料软硬程度的一项重要的性能指标,它既可理解为是材料抵抗弹性变形、塑性变形或破坏的能力,也可表述为材料抵抗残余变形和反破坏的能力。
如果在相同的条件下(相同的磨擦系数、成分、组织、环境条件等等),液压支架管硬度和耐磨性存在非线性的正比关系。
液压支架管壁厚:
一般来说,管子的直径可分为外径、内径、公称直径。管材为无缝钢管的管子的外径用字母D来表示,其后附加外直径的尺寸和壁厚,例如外径为108的无缝钢管,壁厚为5MM,用D108*5表示,液压支架管壁厚塑料管也用外径表示,如De63,其他如钢筋混凝土管、铸铁管、镀锌钢管等采用DN表示,在设计图纸中一般采用公称直径来表示,公称直径是为了设计制造和维修的方便人为地规定的一种标准,也较公称通径,是管子(或者管件)的规格名称。管子的公称直径和其内径、外径都不相等,例如:公称直径为100MM的无缝钢管邮102*5、108*5等好几种,108为管子的外径,5表示管子的壁厚,因此,该钢管的内径为(108*5-5)=98MM,但是它不完全等于钢管外径减两倍壁厚之差,也可以说,公称直径是接近于内径,但是又不等于内径的一种管子直径的规格名称,在设计图纸中所以要用公称直径,目的是为了根据公称直径可以确定管子、管件、阀门、法兰、垫片等结构尺寸与连接尺寸,公称直径采用符号DN表示,如果在设计图纸中采用外径表示,也应该作出管道规格对照表,表明某种管道的公称直径,壁厚。
公称通径是管路系统中所有管路附件用数字表示的尺寸,液压支架管壁厚公称通径是供参考用的一个方便的圆整数,与加工尺寸仅呈不严格的关系。公称通径用字母“DN”后面紧跟一个数字标志。
液压支架管壁厚公称通径(nominal diameter),又称平均外径(mean outside diameter)。 这是缘自金属管的管璧很薄,管外径与管内径相差无几,所以取管的外径与管的内径之平均值当作管径称呼。
DN是公称通径,公称通径(或叫公称直径),液压支架管壁厚就是各种管子与管路附件的通用口径。同一公称直径的管子与管路附件均能相互连接,具有互换性.它不是实际意义上的管道外径或内径,虽然其数值跟管道内径较为接近或相等; 为了使管子、管件连接尺寸统一,采用公称直径(也称公称口径、公称通径)。例如焊接钢管按厚度可分为薄壁钢管、普通钢管和加厚钢管。其公称直径不是外径,也不是内径,而是近似普通钢管内径的一个名义尺寸。每一公称直径,对应一个外径,其内径数值随厚度不同而不同。公称直径可用公制mm表示,也可用英制in表示。管路附件也用公称直径表示,意义同有缝管。
DN-公称直径 Ф-外径
DN15-ф22mm,      DN20-ф27mm
DN25-ф34mm,      DN32-ф42mm
DN40-ф48mm,      DN50-ф60mm
DN65-ф76(73)mm,DN80-ф89mm
DN100-ф114mm,  DN125-ф140mm
DN150-ф168mm,  DN200-ф219mm
DN250-ф273mm,  DN300-ф324mm
DN350-ф360mm,  DN400-ф406mm
DN450-ф457mm,  DN500-ф508mm
DN600-ф610mm,  DN15-ф18mm,  
DN20-ф25mm,      DN600-ф630mm
DN25-ф32mm,      DN32-ф38mm
DN40-ф45mm,      DN50-ф57mm
DN65-ф73mm,      DN80-ф89mm
DN100-ф108mm,  DN125-ф133mm
DN150-ф159mm,  DN200-ф219mm
DN250-ф273mm,  DN300-ф325mm
DN350-ф377mm,  DN400-ф426mm
DN450-ф480mm,  DN500-ф530mm
液压支架管焊接性能:
液压支架管焊接性能主要表现在以下几个方面:
(1)高温裂纹:在这里所说的高温裂纹是指与焊接有关的裂纹。高温裂纹可大致分为凝固裂纹、显微裂纹、HAZ(热影响区)的裂纹和再加热裂纹等。
(2)低温裂纹:在马氏体型不锈钢和部分具有马氏体组织的铁素体型不锈钢中有时会发生低温裂纹。由于其产生的主要原因是氢扩散、焊接接头的约束程度以及其中的硬化组织,所以解决方法主要是在焊接过程中减少氢的扩散,适宜地进行预热和焊后热处理以及减轻约束程度。
(3)焊接接头的韧性:在奥氏体型不锈钢中为减轻高温裂纹敏感性,液压支架管焊接性能在成分设计上通常使其中残存有5%—10%的铁素体。但这些铁素体的存在导致了低温韧性的下降。液压支架管焊接性能,焊接接头区域的奥氏体量减少而对韧性产生影响。另外随着其中铁素体的增加,其韧性值有显著下降的趋势。
已证实液压支架管焊接性能的韧性显著下降的原因是由于混入碳、氮、氧的缘故。其中一些钢的焊接接头中的氧含量增加后生成了氧化物型夹杂,这些夹杂物成为裂纹发生源或裂纹传播的途径使得韧性下降。而有一些钢则是由于在保护气体中混入了空气,其中的氮含量增加在基体解理面{100}面上产生板条状Cr2N,基体变硬而使得韧性下降。
(4)σ相脆化:奥氏体型不锈钢、铁素体不锈钢和双相钢易发生σ相脆化。液压支架管焊接性能由于组织中析出了百分之几的α相,韧性显著下降。“相一般是在600~900℃范围内析出,尤其在75℃左右最易析出。作为防止”相产生的预防型措施,奥氏体型不锈钢中应尽量减少铁素体的含量。
(5)475℃脆化,在475℃附近(370—540℃)长时间保温时,使Fe—Cr合金分解为低铬浓度的α固溶体和高铬浓度的α’固溶体。当α’固溶体中铬浓度大于75%时形变由滑移变形转变为孪晶变形,从而发生475℃脆化。


相关产品: